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This paper is concerned with systems which are not in thermal equilibrium 
because of production and absorption of particles. On the basis of a new 
Hamiltonian describing such a nonequilibrium system, we develop a method 
for deriving kinetic equations for singlet density, time correlations of density, 
etc., including all the higher order interactions necessary to describe the 
production and absorption of particles. The foundations of the Boltzmann 
and Larigevin equations for neutron distributions are studied. The time- 
correlation function is shown to obey a kinetic equation identical to that for 
the singlet density. It is also shown that the description of density fluctuations 
based on the Langevin equation is equivalent to the simplest decoupling of 
the rigorous hierarchy of equations for correlation functions. 

KEY WORDS: Nonequilibrium systems; Boltzmann equation; Langevin 
equation; time correlations; systems with nuclear reactions. 

1. I N T R O D U C T I O N  

In  recent  years there has been a growing  interest  in systems which are not  in 
thermal  equi l ibr ium even in s ta t ionary  states because o f  the p roduc t ion  and  
abso rp t ion  o f  part icles.  Examples  are systems with chemical  react ions ,  
pa r t i a l ly  ionized plasmas,  var ious  fusion devices, and  nuclear  fission reactors .  
A m a j o r  p rob lem in these nonequi l ib r ium systems is to calculate  phase-space  

Department of Nuclear Engineering, Osaka University, Suita, Osaka, Japan. 

249 

(~ 1976 Plenum Publishing Corporation,  227 West 17th Street, New York ,  N.Y. 1001 I. No  part o f  this publica- 
tion may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,  electronic, 
mechanical,  photocopying,  microfilming, recording, or otherwise, without written permission of  the publisher. 



250 Takeo Nishigori 

distributions of the particles and space-time correlations of the particle 
density; they are usually discussed on the basis of phenomenological kinetic 
equations such as Boltzmann's transport equation and the Langevin equation. 

The principal purpose of this paper is to develop a theory for the kinetic 
description of such nonequilibrium systems on the basis of quantum 
mechanical many-body theory. Although many first-principle approaches to 
various kinetic equations have been explored by many authors, (~4~ most of 
them are concerned with systems in which only scattering occurs, and which 
are, therefore, in thermal equilibrium in stationary states. Thus, very little is 
known about the foundations of the kinetic equations for the above-mentioned 
nonequilibrium systems. 

Recent work of Girardeau ~5~ is of interest in this respect. He developed a 
second-quantization representation for systems of atoms, ions, and electrons 
in such a way that composite particles (atoms and ions) are treated as 
elementary particles. He derived a Hamiltonian which takes explicit account 
of ionization and recombination processes. The Hamiltonian, therefore, 
seems to be very powerful for discussing, e.g., kinetic equations in partially 
ionized plasmas. 

As a concrete example of the nonequilibrium systems, we consider in 
this paper a system of many neutrons, nuclei, and photons in nuclear reactors. 
Several authors have discussed the foundations and generalizations of the 
neutron transport equation, taking account of only scattering, (6,7) or includ- 
ing the effects of nuclear reactions5 8~ In the latter formalism ~8~ of Osborn 
et al., however, the notion of the Hamiltonian is incomplete, and their 
deduction of various cross sections in kinetic equations is still phenomeno- 
logical. 

In previous papers (9,1~ we applied the Girardeau formalism and found 
the Hamiltonian to be given by Eq. (3) below, which describes nonequilibrium 
systems of neutrons, nuclei, and photons. On the basis of this Hamiltonian 
we shall study in this paper the foundations, validity, and generalizations of 
the usual kinetic equations. 

We shall derive kinetic equations for neutron singlet density F(x, t) 
and for the time-correlation function F(xt; x't ') of the neutron density. The 
resulting kinetic equation for the singlet density reduces to the usual one 
when quantum effects are neglected. It is found that the kinetic equation 
for the time-correlation function is identical to that for the singlet density, 
in the approximation of the simplest decoupling of a rigorous hierarchy of 
equations for correlation functions. This simplest decoupling is shown to be 
equivalent to the approximation underlying the Langevin equation. 

In Section 2 we shall derive a rigorous hierarchy of equations for time- 
correlation functions. In Section 3 the simplest decoupling of the hierarchy 
is carried out to get the kinetic equation for F(xt; x't'). Section 4 is concerned 
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with the singlet density, and the final section is devoted to a summary and 
concluding remarks. 

2. H I E R A R C H Y  OF E Q U A T I O N S  FOR T I M E - C O R R E L A T I O N  
F U N C T I O N S  

Let us consider many neutrons in a relatively dense medium consisting 
of nuclei U. The following reactions are assumed to occur in the system: 

t 
-+ n + U (direct scattering) 

n+ U { ~ n +  U (resonancescattering) 

1.--+ C 7 + C (radiative capture) 
A + B--~ n + a + B (fission) (1) 

where n, C, and 7 denote a neutron, a compound nucleus, and a photon, 
respectively. For simplicity we have assumed the simplest process for fission; 
the compound nucleus splits into two primary fragments A and B, one of 
which then emits only one prompt neutron. The generalization is given in 
the appendix. 

By virtue of the ideal space introduced in Ref. 9 (hereafter Refs. 4, 7, 9, 
and 10 will be referred to as I, II, III, and IV, respectively), all the particles 
(neutron, nuclei, and photon) can be treated as elementary particles. A state 
I U) of nucleus U, for example, corresponds in the ideal space to the ideal 
state ]U) which is created by the ideal operator U t. The creation operator of 
a neutron with wavenumber vector k is denoted by ~k t and that of a photon 
with wavenumber vector q and polarization A is bqfl. These ideal operators 
are defined by the simple commutation rules (Ill  2.11) for elementary bosons 
and fermions. The nuclear reactions in (1) are described 2 by a combination 
of the ideal Hamiltonians (IV 2.7) and (III 4.11). To discuss the transport of 
neutrons, however, we must specify the position and momentum of a neutron 
simultaneously, and we use here Ono's method of cell function5 2,L8~ The 
configuration space of the neutrons is divided into cubic ceils with edge 
length L, and states of a free neutron are specified by the phase points 
x = (X, P) instead of the wavenumber vectors. The edge length L is chosen 
to be of the order of magnitude of the spatial resolution with which we wish 
to describe the neutron distributions. The streaming of the neutrons is 
described by (4,8~ 

T = ~ "q*(XP) - P ' V x  ~(XP) (2) 
X,IP 

2 To describe the last stage A + B-+ n + a + B in fission, we incorporate the open 
channels involving three particles n, a, and B into the argument of w in IV. We then 
find that the interaction potential W(A ; ha) and the free Hamiltonian Ho~ are added to 
(IV 2.7). 
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where m is the neutron mass and Vx denotes a finite difference. Our system is 
thus characterized by the following Hamiltonian: 

H =  Ho + T +  H '  (3) 

where Ho is the free Hamiltonian 

Ho = Ho. + Hov + Hoc + Hoa + Ho~ + Ho. + Ho~; 

Ho. = ~ e(v)~+(x),7(x) 
x 

Hov = ~ E(U)U+U, etc,, 
U 

Ho, = ~ hcq(b~ab,a + �89 (4) 
t l , h  

and H '  is the interaction potential 

H ' =  V +  W, W =  Wt + Wz, 
w~ = w ( c ;  nU) + w(C; AB) + W(C ; ~c) (5) 

v = r ,  "Z ,/(x)U+<xUl~lx'U'>U'~(x') (6) 
X , U X ' , U '  

W(C; nU) = ~ ~ C%ClHlxU>U~(x) + H.c. (7) 
C x , U  

W(C; AB) = ~ ~ C+<CIHIAB)BA + H.c. (8) 
C A ,B  

W(C; ~,C) = ~ ~ g(C, C', qa)CtC'(bq~ + bt_q~) (9) 
C C ' , q , h  

W2 = W(A;na) = ~ * ( x ) a + ( x a l H l A ) A  + H.c. (I0) 
x , a  .A 

where H.c. stands for the Hermitian conjugate. The interaction potential V 
describes the direct scattering; v in the matrix element is the hard-core poten- 
tial for n-U interaction. The potential W(C; nU) represents the resonance 
scattering and the first stage of the fission, W(C; AB) represents the second 
stage, and W(A ; na) represents the last stage. The radiative capture is described 
by W(C; vC). This Hamiltonian is valid for neutrons in a dense medium, 
where n-U interaction is predominant. In general, we must take account of 
n-n and n-a interactions, etc., which will be ignored in this paper. 

Since we are interested in the neutron density, we start with the 
Heisenberg equation of motion 

_ ~ p  ih ~t Nr~(x, t) = .VxN~(x, t) + H'~(t) - H],h(t) (11) 
m 

for the number operator N~(x, t )=  exp(iHt/h)~+(x)v(x)exp(-iHt/h). In 
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(1 I), H'H(t) is the Heisenberg operator corresponding to 

H~' = ~*(x)[v(x), H ' ]  

= 

U x',U' 

+ ~ ~ ~7*(x)U*<xUJHIC)C + ~ ~ ~'(x)a'<xaIHJA>A (12) 
U C a A 

This expression is valid irrespective of whether the nucIei are fermions or 
bosons. We note here that the total number operator of the neutrons does 
not commute with the Hamiltonian; this is due to the interaction potential W 
and indicates that our system is in nonequilibrium. 

The equation of motion (1 l) yields an equation for the time-correlation 
function F(x t ;  x ' t ' )  of the neutron density in the following way: Let the 
state of the system be denoted by ItFH) in the Heisenberg picture. It corre- 
sponds in the ideal space to an ideal state ]tFH), as seen from III. Then the 
time-correlation function is expressed by 

F(x t  ; x ' t ' )  = (1/L~)(tFu[Nu(x, t)Nu(x',  t')t~Fu) 

= (1/L~)Tr{pHNa(x, t)N~(x', t')} (13) 

where pa = IW~)(Ti~l is the density operator. Hence we have 

(a/at)F(xt ; x ' t ' )  = - (P/m). VxF(x t  ; x ' t ' )  + C(xt ; x ' t ' )  (14) 

C(xt;  x ' t ' )  = (1/ihL 6) Tr[p~{HxH(t) - H~h(t)}N~(x', t')] (15) 

The function C(xt  ; x ' t ' )  contains the higher order correlation functions, and 
(14) is the first equation in a hierarchy of equations for correlation functions. 

3. KINETIC EQUATION FOR THE T IME-CORRELATION 
FUNCTION 

In this section we shall decouple the hierarchy of  equations to get the 
kinetic equation (40) for the time-correlation function. 

3.1. Decoupling of the Hierarchy 

As a simple, but still useful approximation to C(xt  ; x't '),  we express it in 
terms of the lowest order correlation function. Namely, we insert in (15) the 
identity operator N~i:(xo, to)N~(xo, to), and approximate the average of the 
product by the following product of averages: 

C(xt  ; x' t') ~- P(xt; Xoto)F(xoto ; x' t') (16) 

V(xt; xoto) = (I/ih) Tr[pE{H;H(t) - H~( t )}Nf f : (xo ,  to)] (17) 
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Here Xo and to are to be determined later 3; to will be chosen to be the initial 
time of the transition described by H'~(t)  in (17). The insertion of the identity 
operator is only a mathematical device to simplify the discussion. Actually, 
the factor Nn(Xo, to) arises from H;~(t)  - g ~ ( t ) ,  and hence the insertion 
of the identity operator is spurious. An approximation like (16), i.e., factoriza- 
tion of a higher order function into lower order ones, is often made in many- 
body theory, but its validity is not so clear and is subject to an examination 
of the final result. It will be seen later that (16) is a useful approximation if 
t > t', and hence we shall assume t > t '  for a while. 

Equation (14) is, however, still coupled because the function F(xt ; xoto) 
in (16) is a higher order correlation function. We now express F(xt ; Xoto) in 
terms of the neutron singlet density by means of the adiabatic switching-off of 
interaction presented in I. This method is quite suitable for the present 
purpose, because it involves all the higher order interactions necessary to 
describe nuclear resonance reactions. The method is based on the view that the 
particles must be far apart before interaction, and that, therefore, the higher 
order densities can be expressed at the initial time of the interaction by 
products of singlet densities. It is by this procedure that we go over from the 
rigorous microscopic description to the irreversible kinetic description. 

Let us consider that our system is now approaching a stationary state 
and make the following assumptions: 

(a) The range of the neutron-nuclear interaction is so short that the 
neutrons are found in one of the free states, and the scattering and nuclear 
reactions occur instantaneously. 

(b) The effects of the perturbations T, V, and W to this free state are 
separated. 

(c) The transition probability for a time interval r is proportional to ~-. 

The assumptions (a) and (b) are implications of the Boltzmann equation. 
The assumption (c) is used in Kirkwood's theory (1~ and makes the rigorous 
equation irreversible(4~; r ~ 10-14 sec is the time taken for a nuclear reaction 
to be completed, and the limit r --~ 0 is taken at the end of the calculation in 
accordance with assumption (a). 

According to assumption (a) the system is in a free state at an initial 
time t of a transition. Let this free state be denoted by [I), which is an eigen- 
state of the free Hamiltonian H0. Let us consider the time interval t ~ t + ~- 
and employ the prescription of I for the time derivative. Then the rigorous 

3 If the system is nonlinear, i.e., if n-n interaction is taken into account, the right-hand 
side of (16) should consist of two terms corresponding to two possibilities of determining 
X0. 
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equation (14) becomes, in the approximation (16), 

(a/at)F(xt ; x ' t ' )  

= - (P/m). VxF(x t  ; x ' t ' )  
(.t+~ 

+ lim(1/~-)l F(x i ; xo t )d?F(xo t ;X ' t ' )  for t > t '  (18) 
J t  

where we have set to = t. The coefficient of F(xot ; x ' t ' )  in the second term 
on the right-hand side of (18) is identical in form with the collision term 
(I 3.18), except for the presence of Nffl(Xo, t); this extra factor, however, 
becomes a c-number when we rewrite P(xi; Xot) in the interaction picture, 
as in (I 3.20). Hence, the calculation of I'(xf; xot) is quite similar to that from 
(I 3.20) to (I 3.25). Namely, introducing the interaction picture, and switching 
off the interaction at the initial time, we obtain 

P(xf; Xot) = {Cl(x, t) + C2(x, t)}/F(xo, t) (19) 

G ( x ,  t) = (l / ihL 3) Tr{p(t)T~(0)} + c.c. 

= (1/ihL3)(I[Tx(O)[I) + c.c. (20) 

C~(x, t) = (1/h~L 3) e"'~(IIT*(t')L(O)l I) dr' + c.c. (21) 
o~ 

Here, c.c. stands for the complex conjugate, and the time dependence of the 
operators is due to the interaction picture. In (19), F(xo; t) = Tr{p(t)N(xo, t)}/L a 
is the singlet density of the neutrons. The transition operators T and Tx are 
defined by 

T = H '  U(0, - oe) and Tx = Hx' U(O, - oe) (22) 

where U(0 , -oo)  = 1 + G(E~)H' +... and G(EI) = (E~ - Ho + ie)-l, e 
being an infinitesimal positive number. They describe transitions of the many- 
particle state with the initial energy EI; the operator Tx represents all the 
transitions in which a neutron ends up in the state Ix). It should be noted 
that the function F(xf; xot) has become independent of f by virtue of the 
adiabatic-switching procedure. Hence the integration of I? in (18) is pro- 
portional to r [assumption (c)], and the limit ~ -+ 0 in (18) has no effect; the 
second term on the right-hand side of (18) is thus actually the time average of 
the change of F(xt  ; x ' t ' )  caused by scattering and nuclear reactions (Kirk- 
wood's time-averaging procedure(~). Since II) is the free state, both Cl(x, t) 
and C2(x, t) are given in terms of a product of the singlet densities, and thus 
(14) has become a closed equation. 

3.2. Binary-Interaction Approximation 
The transition operator T has nonvanishing matrix elements between 

states of more than two particles. Such matrix elements arise from higher 
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order interactions in which the colliding pair is different from the pair of the 
first collision. Since the transport equation implies that a neutron interacts 
with individual nuclei independently, we discard in this section such com- 
plicated interactions and assume that all the higher order interactions take 
place between the initially colliding pair. This approximation is expressed by 
the following diagrams: 

T (v~ = V + V G V  + V G V G V  + . . .  
U U U 

~-- + + + . . .  

n rl n 

n 

T <wp= Wz + W ~ G W z  + W x G W ~ G W ~ + . . .  
U U U 

~ ~ - - f -  + ~  + ~ --- + - ' .  (24) 

D D_ r l  

where T = T ~v) + T ~vr according to assumption (b), and 

T~W~ = T<Wl~ + T~W2 ~ + T~WPGT~Wl ~ + ... 

Each internal line in the diagrams indicates the pairing of a creation operator 
and an annihilation operator in two successive interactions, which means that 
a particle destroyed in an interaction is the same as that created in the 
preceding interaction. In the case of the scattering, only the binary collision 
contributes in this approximation, and the effect of multiple scattering 
represented by 

I1 r l  r l  

is ignored. This effect was examined in detail in II and will be considered in 
the present formalism in the appendix. 

In the above-mentioned approximation we can write as follows: 

rx  --- 
U x ~ , U  ~ 

+ ~ ~ n*(x)a*B*(xaBlTlx'U')U'~(x') (26) 
a~B XJ ,U"  

:3.3. A Kinetic Equation for the Time-Correlation Function 

Let us return to (19) and consider first the term Cl(x ,  t). With the aid of 
the approximation (26), it readily follows that 

(IITx(O)lI) = ~ (xU[T[xU)n(x, On(U, *) (27) 
U 
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where n(x, t) and n(U, t) are the occupation numbers in the state ]/) = l~F(t)). 
Substitution of (27) into (20) gives 

2 I m ( x f l T l x U )  ~-5 n(x, t)n(U, t) Cl(x, t) = 

( P )  n(U,t)n(x,t)._s L 3 = ~ - ~o~(x, U) .-ff (28) 
where use has been made of  the optical theorem (III 5.26); atot(X, U) is the 
total cross section of nucleus U in the state ]U). The sum of error(X, U)n(U, t) 
with respect to U is the cross section of all U-type nuclei for a neutron in the 
X cell; this cross section divided by the volume L a is the so-called macro- 
scopic cross section Ztot(x); here we have neglected the time dependence of 
Etot because the total number of U-type nuclei is much greater than that of 
the neutrons. On the other hand, the factor n(x, t)/L a = (IIN(x)]I)/L ~ in (28) 
is the singlet density F(x, t). Hence, 

Cl(x, t) = - (P/m)  Y, tot(x)F(x, t) (29) 

which represents the number of  neutrons with momentum P " los t "  in the 
X cell per unit time and per unit volume. 

Let us next consider the "ga in"  term C2(x, t), (21). By making use of 
the approximation (26), we readily obtain 

(Ilr*(t')rx(0)lz) 

= ~ ~ exp[ - i (E(P ,  U) - E(P', V'))t'/h] 
U ]P',U' 

x I(XPUITIXP'U')]2[1 + n(U, t)] 

x [1 - n(XP, t)]n(U', t)n(XP', t) 

+ ~ ~ exp[-i(E(P, a, B) - E(P', U'))t'/h] 
a,B P ' ,U"  

x t(XPaBITIXP'U')I2[I +_ n(B, t)] 

• [1 _+ n(a, t)][1 - n(XP, t)]n(U', t)n(XP', t) (30) 

Here, E(P, U) = E(P) + E(U), etc. ; the sign in front of the occupation 
numbers is determined by whether the nuclei are bosons or fermions; and 
use has been made of the fact that the transitions take place within a cell 
because of the short-range interaction. Inserting (30) into (21), and introduc- 
ing the macroscopic differential cross sections by 

Y,s(XP'-+ XP) = ~ ~ a,(XP'U'--->XPU)[1 _+ n(U, t)]n(U', t) (31) 
U, U" 

1 r , U' ~ XPaB) xf(xe'-+ xP) = ~ p 
a,B, U" 

x [1 + n(B, t)][1 _+ n(a, t)]n(U', t) (32) 
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where, as was shown in III and IV, 

mL a 2rr 3(E(P, U) - E(P', u'))I(XPUITIXP'U')[  2 (33) ~s(XP'U'---~XPU) = p-----7- -~- 

is the differential cross section for the direct and resonant scattering, and 
where 

. . . .  mL  a 2,r 3(E(P, a, B) - E(P', f ' ) ) l (Xr 'aBIZ lXV ' f ' ) l  ~. ~I(XP' U' -+ xt'az~) = -if7 h 

(34) 
is the fission cross section, we finally obtain 

Ca(XP, t) : ~ -~' Zs(XP"--+ XP)[1 - LaF(XP, t)]F(XP", t) 

P" 
+ - -  ZI(XP" -+ XP)[1 - LaF(XP, t)]F(XP", t) (35) 

p, ,  "17/ 

which is the number of neutrons with momentum P produced in the X cell 
per unit time and per unit volume due to scattering and fission. 

We are now in a position to combine (19), (29), and (35) with (18). 
Substitution of (19) into (18) gives the combination {F(xo, t)}-:F(Xot; x't ') ,  
in which we can put Xo arbitrarily. On putting xo = x in the C: term in (19) 
and Xo = X and Po = P" in the C2 term, we arrive at the following kinetic 
equation: 

F(xt;  x ' t ' )  = - B ( x ) F ( x t ;  x ' t ' )  for t > t '  (36) 
8t 

B(x)F(xt;  x' t') = P .  VxF(x t ;  x' t') + P Ztot(x)F(xt; x'  t') 

- (y,s(xv" -+  x v )  + r , , (Xl ,"-- ,  x v ) )  
p o  

x [1 - LaF(XP, t)]F(XP"t; x ' t ' )  (37) 

Usually, the density correlation is discussed on the basis of the Langevin 
equation 

(8/et)ff(x, t) = - B ( x ) f f ( x ,  t) + R(x, t) (38) 

for the stochastic distribution function if(x, t), with the assumption that the 
power spectrum of the random force/~(x, t) is white, i.e., 

(/~(x, t )~(x ' ,  t ' ))  oc 3(t -- t') 

If  t > t ', we have the relation (/~(x, t)ff(x',  t ' ))  = O, and we easily find the 
kinetic equation (36) from the phenomenological equation (38). Hence we 
see that the rather drastic approximation (16) is useful only for t > t'. If  
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t < t', on the other hand, we consider the derivative with respect to t', and 
in a way quite similar to that in (36), we get 

(~/at')F(xt; x ' t ' )  = - B ( x ' ) F ( x t ;  x ' t ' )  for t < t '  (39) 

The derivation of the kinetic equations (36) and (39) shows that the 
description of the fluctuations based on the Langevin equation (38) is 
interpreted as the approximation of the simplest decoupling of the rigorous 
equation (14), i.e., as the approximation (16) and the assumptions (a)-(c). 
This new insight suggests to us a method of improving the Langevin formal- 
ism. That is, we can go beyond the Langevin equation (38) by taking account 
of the second equation, i.e., the equation for C(xt;  x't ') ,  in the hierarchy. If 
we wish to take all the higher order equations in the hierarchy into account, 
we use Mori's Langevin-type rigorous equation ~11~ instead of the Heisenberg 
equation. Then we can obtain the most general kinetic equation. In the case 
of classical monatomic liquids, this approach has been studied recently by 
Akcasu et al. ~,13~ and Mazenko. (14~ 

It should be noted that (36) and (39) are identical in form to the Boltz- 
mann equation for the singlet density. This fact that the singlet density and the 
time-correlation function obey the same kinetic equation is known in kinetic 
theory of classical monatomic liquids, (12'15~ and the present study confirms 
that this is also the case with the general nonequilibrium and nonstationary 
systems. 

The kinetic equation (36) is one of the main results of this paper. The 
correlation function F(xt; x ' t ' )  plays a fundamental role in nonstationary 
reactor noise analyses, <~6~ i.e., in detecting anomalous behavior of nuclear 
reactors. To calculate this correlation function, we can now make use of the 
methods of solution of the Boltzmann equation, which have been developed 
so far extensively in connection with the singlet density. 

The foregoing analysis is based on the simplifying assumptions that a 
neutron interacts independently with each of the nuclei, that there is no 
neutron source, and that only one neutron is emitted per fission. These 
assumptions will be removed in the appendix, with the following result: 

( a/ at )F(xt  ; x' t') = - B(x)F(xt  ; x' t') 
+ S(x, t)[1 - LaF(x, t)]F(x', t') for t > t '  (40) 

where B(x) is now defined by (A.2) and S(x) represents the neutron source 
intensity. 

4. KINETIC E Q U A T I O N  FOR THE S INGLET D E N S I T Y  

Let us proceed to a kinetic equation for the singlet density. If only the 
direct scattering take place in the system, the nuclei can be regarded as point 
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particles, and the interaction potential V given by (6) is self-evident. In such 
a case, we generalized in II the usual transport equation so as to include the 
effect of multiple scattering. We can now easily extend the formalism of II 
to take account of nuclear reactions. 

Upon neglecting the correlation, we can put F(x t  ; x '  t ')  = F(x ,  t )F(x ' ,  t ')  
and obtain from (40) the following kinetic equation for the singlet density: 

(~/Ot)F(x, t) = - B ( x ) F ( x ,  t) + S(x,  t)[1 - L3F(x,  t)l (41) 

In this case the approximation (16) is not necessary, and the transport 
equation (41) follows from the decoupling, by means of assumptions (a)-(c) 
in Section 3.1, of a hierarchy of equations for density functions (i.e., the 
BBGKY hierarchy generalized to the case of quantum mechanical systems 
with nuclear reactions). If the quantum effects arising from the multiple 
scattering and from the exclusion principle can be neglected, the transport 
equation (41) reduces to the usual one. 

Other corrections can also be formulated in the present formalism; they 
are the interaction between the neutrons, the coupling of direct and resonant 
interactions like T(VC~GT (v~, higher order interactions involved in T (w~, such 
as a succession of resonance scattering and fission, and so on. These correc- 
tions, however, do not seem to be more important than the multiple scattering 
correction. That is, no significant correction appears even when the treatment 
in II is generalized to take nuclear reactions into consideration. The conclusion 
on the validity presented in II, therefore, applies also to the usual neutron 
transport equation; i.e., the validity depends on the energy of the neutron 
under consideration, the energy spectrum of all the neutrons, and the spatial 
resolution L. 

5. S U M M A R Y  A N D  REMARKS 

In this paper we have developed a new method for finding kinetic 
equations in nonequilibrium systems. The kinetic equation (40) has been 
found, and it has been concluded that the approximation involved in the simple 
Langevin equation is interpreted (except for the quantum effects) as the simplest 
decoupling of the hierarchy of rigorous equations; an improvement of the 
description based on the simple Langevin equation has been suggested. The 
Boltzmann equation (41) for the singlet density has been derived. Finally, the 
quantum corrections to the usual kinetic equations have been discussed. 

The present formalism is, of course, applicable to other nonequilibrium 
systems by suitably changing the Hamiltonian. If Girardeau's Hamiltonian ~s~ 
is used, we can obtain the kinetic description of partially ionized plasmas. The 
Hamiltonian for other systems can easily be derived by means of the Girardeau 
formalism ~ and of III and IV. For the case of monatomic gas, on the other 
hand, the present formalism yields the result of I for the singlet.density and 
the Bottzmann-type equation of Nelkin et al. ~15> for the time-correlation 
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function. In these and other applications, the present formalism is partic- 
ularly useful for dealing with higher order interactions involved in nuclear 
reactions, resonance scattering of electrons or photons by atoms, and so on. 

The present investigation has also demonstrated the effectiveness of the 
Hamiltonian, like (3), for nonequilibrium systems. We therefore expect that 
modern statistical physics based on field-theoretical methods also is useful 
for discussing nonequilibrium systems. For example, we consider the two- 
time Green's function (T~r~(xl, tl)~THt(x~,, t:,))/ih instead of the singlet 
density, and generalize the Kadanoff-Baym eqtiations ~7~ so as to include the 
effect of production and absorption of particles. Then, solution of the trans- 
port equation is reduced to calculation of the self-energy parts with the aid 
of the diagram technique. Sucli an approach to nonequilibrium statistical 
physics is now in progress. 

A P P E N D I X  

In this appendix we shall remove the three assumptions in order to derive 
(40). 

To take account of the multiple scattering, we add the terms 

~, ~ ~*(x)ae*(x, acr[Tlx', au')av'~7(x') (A. 1) 

to the binary-interaction approximation (26), where 

= . . .  ! . . .  ! ) 1 / 2  

with ni denoting the occupation number of the ith state of nucleus U, and where 
the I~v) are occupation-number states of many U-type nuclei (e.g., two U-type 
nuclei in the case of double scattering). To take account of a source that emits 
neutrons through, e.g., photonuclear reaction P(7, n)Q, we add to the 
Hamiltonian (3) the interaction potential W(P; 7P) + W(P; nQ) and the free 
Hamiltonians of the nuclei P and Q. Furthermore, to take account of fission 
processes that emit, e.g., two neutrons because of the further decay a -+ n + b 
of the fragment a, we consider the additional Hamiltonian Hab + W(a; rib). 

Then, it is straightforward to obtain the kinetic equation (40), with the 
operator B(x) now given by 

B(x) f (x t  ; x't ') 

P . V x F ( x t ' x ' t '  ) + P Etot(x)F(xt;x't ')  ~--  "T" m ' m 

(y XxP" -+ x p )  + 
p -  

x [1 - L3F(XP, t)]F(XP"t ; x't ') (A.2) 
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Here, the differential and total cross sections for direct scattering are defined 
by (II  42) and (II  43), respectively, which include the contribution from all 
orders of  multiple scattering occurring in the X cell; Zr(XP" ) is the total 
fission cross section, if(P) is the average momentum distribution of the 
prompt  neutrons, and ~(P") is the average number of prompt  neutrons emitted 
per fission. In (40), S(x,  t) is the source intensity given by 

1 
S(x ,  t) = ~-5 ~ E co(qAP--~ xQ)[1 + n(Q, t)]n(P, t)n(qA, t) (A.3) 

q,~.,P 

where 

~o(qAP--+ xQ)  = ~-~ 3(E(P, Q) - E(q,P))[(xQITIqAP)I  2 
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